Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(7): 112670, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392382

RESUMO

Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.


Assuntos
Efrinas , Neoplasias , Efrinas/genética , Proteômica , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Transdução de Sinais , Receptores ErbB/genética , Neoplasias/genética
2.
Clin Cancer Res ; 29(14): 2686-2701, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36976175

RESUMO

PURPOSE: Accumulating analyses of pro-oncogenic molecular mechanisms triggered a rapid development of targeted cancer therapies. Although many of these treatments produce impressive initial responses, eventual resistance onset is practically unavoidable. One of the main approaches for preventing this refractory condition relies on the implementation of combination therapies. This includes dual-specificity reagents that affect both of their targets with a high level of selectivity. Unfortunately, selection of target combinations for these treatments is often confounded by limitations in our understanding of tumor biology. Here, we describe and validate a multipronged unbiased strategy for predicting optimal co-targets for bispecific therapeutics. EXPERIMENTAL DESIGN: Our strategy integrates ex vivo genome-wide loss-of-function screening, BioID interactome profiling, and gene expression analysis of patient data to identify the best fit co-targets. Final validation of selected target combinations is done in tumorsphere cultures and xenograft models. RESULTS: Integration of our experimental approaches unambiguously pointed toward EGFR and EPHA2 tyrosine kinase receptors as molecules of choice for co-targeting in multiple tumor types. Following this lead, we generated a human bispecific anti-EGFR/EPHA2 antibody that, as predicted, very effectively suppresses tumor growth compared with its prototype anti-EGFR therapeutic antibody, cetuximab. CONCLUSIONS: Our work not only presents a new bispecific antibody with a high potential for being developed into clinically relevant biologics, but more importantly, successfully validates a novel unbiased strategy for selecting biologically optimal target combinations. This is of a significant translational relevance, as such multifaceted unbiased approaches are likely to augment the development of effective combination therapies for cancer treatment. See related commentary by Kumar, p. 2570.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...